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Editorial on the Research Topic
The effects of environmental change on anchialine ecosystems

Anchialine ecosystems comprise interconnected groundwater habitats at the land-sea
aquatic continuum within karstic and volcanic geological settings. Here, crevicular and
cavernous environments are flooded by the subterranean estuary, the region of coastal
aquifers where seawater and terrestrial-borne freshwaters mix (Moore, 1999), creating
globally dispersed habitats for characteristic aquatic fauna with subterranean adaptations
(Bishop et al,, 2015; van Hengstum et al., 2019). These cave-adapted organisms are
primarily invertebrates, often endemic, with metabolic, physiologic, and morphologic
adaptations that allow them to thrive in dark and energy-limited environments.
Historically, these habitats have been considered particularly stable environments (e.g.,
Sket, 1996). However, there is growing evidence that the functioning of anchialine
ecosystems is greatly influenced by external meteorological, hydrological, and oceanic
conditions that closely link them with adjacent terrestrial and marine habitats (e.g.,
Brankovits et al., 2018; Tamalavage et al., 2018). For all these reasons, anchialine
ecosystems may be more susceptible to short- and long-term effects of environmental
change than previously thought.

Organic matter availability is pivotal to the functioning of freshwater, estuarine, or
marine habitats, because it regulates microbial community structure and dissolved
oxygen concentrations in the water column and the sediments (e.g., Howarth et al,
2011). Anchialine ecosystems are typically oligotrophic environments with low dissolved
oxygen content and, therefore, they can easily transition into anoxic eutrophic habitats
when organic matter inputs increase from either terrestrial or marine sources (e.g., at
sinkholes, cenotes, or other cave openings) (Pohlman, 2011). The inputs, composition,
and bioavailability of organic matter are sensitive to changes in nearby surface habitats,
human activities and pressures, tidal fluctuations, seasonal changes in precipitation, and
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extreme weather events, such as hurricanes and tropical storms
(e.g., Brankovits et al., 2021).

This Research Topic was established with the aim to bring
together the most recent outcomes and advances from a variety
of scientific disciplines that link spatial and temporal changes in
the environment to biogeochemical, ecological, and
physiological changes at different biological scales in
anchialine ecosystems, from microbes and macrofauna to
habitat level. We have received contributions from disciplines
spanning paleoecology, microbiology, biogeochemistry, and
ecophysiology from four geographical regions around the
world (Australia, Bermuda, The Bahamas, and the Yucatan
Peninsula). Specifically, these studies aimed at characterizing
the limits of physiological adaptations of cave-adapted
crustaceans, the drivers of organic matter inputs over time,
and how organic matter availability regulates microbial
community structure and meiofauna assemblages (Figure 1).
These contributions expand our understanding of anchialine

~ surface vegetation

10.3389/fmars.2022.1029027

ecosystem functioning and enable better predictions of future
ecological changes within these coastal aquifer habitats.
Cresswell and van Hengstum (2022) evaluated links between
changes in environmental factors and benthic foraminiferal
assemblages in Bermuda using sediment cores that are the
best-preserved stratigraphic succession currently known from
an underwater cave. In addition to marked changes in salinity
due to the vertical and horizontal migration of the mixing zone
with sea-level fluctuations, the source of organic carbon was an
important factor shaping the assemblages of benthic meiofauna
over the last 10,000 years. In another study from The Bahamas,
Risley et al. (2022) showed that microbial community structure
is influenced by the origin of organic carbon at the time of
deposition, linking changes in terrestrial vegetation on the
surface and microbial sedimentary processes in the subsurface
over the past 2,000 years. Beyond the sediments, the stratified
water column is also inhabited by a consortium of microbes that
regulate organic matter transformation. Using cell population

subsurface soil

oM (terrestrial)

fresh groundwater
hypoxic / anoxic

brackish groundwater
hypoxic / anoxic

cave sediment
hypoxic / anoxic

FIGURE 1

OM (sedimentary)

transformation by microbes

POM

<+ OM
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Conceptual model of organic matter (OM) inputs and transformation in a coastal cave environment flooded by fresh and saline groundwaters, a
typical anchialine ecosystem. The inputs and consumption of OM affects the concentrations of dissolved oxygen, particulate organic matter
(POM), dissolved organic matter (DOM), and methane (CH,) in the water column. The salinity and chemical gradients create a set of habitats in
this environment. Studies submitted to this Research Topic include investigations of (A) the physiological adaptations of cave-adapted
crustaceans (Chavez-Solis et al., 2022), (B) microbial assemblages in the stratified water column (Elbourne et al., 2022), and the effects of
sedimentary OM deposition over time on (C) meiofaunal assemblages (Cresswell and van Hengstum, 2022) and (D) microbial communities

(Risley et al., 2022).
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counts and 16S rRNA amplicon analyses, Elbourne et al. (2022)
characterized the microbial communities along physicochemical
gradients and depth profiles in the stratified water column of the
Bundera Sinkhole, Australia. Although the high level of
taxonomic novelty made it difficult to attribute metabolic
functions to many of the key microbial players, potential
chemolithotrophic processes, including sulfur-, ammonia-, and
nitrite-oxidation, were supported by the study. This work
highlights the effects of increased organic matter loading on
microbially-mediated elemental cycling and their influence on
shaping habitat variability in anchialine ecosystems. The
observed salinity and dissolved oxygen gradients create
heterogeneous habitats that affect physiological adaptations
within macrofauna species and populations. Through a set of
physiological and metabolic parameters, Chavez-Solis et al
(2022) showed that closely related cave-shrimp species from
the genus Typhlatya in the Yucatan Peninsula have different
metabolic capacities that are in correspondence with the salinity
they inhabit. This work has implications for understanding the
evolutionary history of this cave-restricted genus and for the
conservation efforts of anchialine ecosystems.

Collectively, the above contributions highlight how the
interplay of environmental factors such as salinity, organic
matter loading, and dissolved oxygen content control habitat
variability and ecosystem functioning in anchialine ecosystems.
Future studies should investigate direct linkages between
microbes, biogeochemical processes, and trophic webs,
considering the role of macrofauna in these processes. Focus is
also needed on a more comprehensive identification of microbial
assemblages; investigate regional and sub-regional drivers on the
observed biogeochemical processes and differences between
ecosystem models from different geographical regions. The use
of modern molecular technologies would aid identifying such
mechanisms and help shed light on evolutionary and adaptive
processes. A conservation approach integrating physiology,
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niche width, and global environmental change projections for
cave-restricted species and their habitats is paramount for the
protection of anchialine ecosystems.
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Chapter

Subterranean waters in Riviera
Maya of the Yucatan Peninsula:
Vulnerability and the Importance
of Monitoring

Luis M. Mejia-Ortiz, Alejandro L. Collantes-Chdvez-Costa,
Cruz Lopez-Contrevas and Oscar Frausto-Martinez

Abstract

The Mexican Caribbean coast has great scenic beauty both on the surface and
underwater, which is why it has been a developing area for tourism since the 1970s,
establishing sites such as Cancun and Playa del Carmen and empowering others
such as Cozumel and Tulum. Their biological richness is enormous, especially in
the Mesoamerican Reef of which they are a part. However, this richness and scenic
beauty are not possible without the ecological assemblages that exist within these
regions’ adjacent ecosystems, mainly the surrounding seasonally dry tropical forest
and the coastal wetlands that, together with the oceanographic characteristics of
the Caribbean Sea, potentiate it, turning the region into the most visited in Latin
America. To this end, groundwater plays a very important role in the assemblages of
biotic and abiotic elements that are shared with the Caribbean Sea; thus, its constant
monitoring allows us to identify how the changes that occur in the tropical forest are
producing various changes in the composition and abundance of coastal reef ele-
ments. Here, we present results of our study of groundwater conditions (temp, pH,
oxygen dissolved, and salinity) in nineteen cenotes and underground rivers of the
Riviera Maya and six cenotes of Cozumel. We also profiled the predominant vegeta-
tion on the surface of this region, which is a seasonally dry tropical forest, to under-
stand the components and functioning of these subterranean ecosystems to assess
their vulnerability and identify their threats from human development (population
growth, tourism development, mobility capacity). These threats not only affect the
cave and coastal organisms but also the tropical karstic landscapes that are character-
istic of these systems.

Keywords: underground, aquatic monitoring, ecological links, vulnerability

1. Introduction

The groundwaters in many places around the world are sources of freshwater for
human use [1]. In Mexico, the Yucatan Peninsula is the largest freshwater source in the
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region. Its soil is mainly karstic, allowing a high porosity and filtration of rainwater

to the underground [2, 3]. Due to this reservoir, the tropical forest is tall and exuber-
ant because the soil layer is thin enough to allow tree roots to reach the aquifer. The
extreme hot conditions cause the forest to be dry or semi-dry [4, 5]. Over many years,
these conditions have produced thousands of conduits and entrances [6, 7] that reach
to coastal areas as subterranean rivers. The richness of the Caribbean Sea establishes
important conditions for the proliferation of coral reefs [8]. The terrestrial ecosystems
(tropical forest, mangrove, and dune) are connected by underground waters that
establish links among the adjacent terrestrial and marine ecosystems (coastal lagoons,
sea grass, and coral reefs). However, this role that is important, has been poorly valua-
tion, and the groundwaters has a unique characteristics that produce a special ecosys-
tems [9]. The state of Quintana Roo and its coast have natural attractions with unique
scenic beauty, such as Caribbean beaches, reefs, lagoons, and archeological sites,
among others. Tourism is based on sun and sand, but there are other tourist attrac-
tions that are highly visited, such as nature reserves and cultural areas [10]. This set of
attractions motivated the creation of Canciin in 1970, which became the largest and
most important tourist destination in Mexico and the Caribbean [11]. Natural attrac-
tions also led to the development of the Riviera Maya in the 1990s, which is equally as
recognized as Cancun [12]. Together, these locations receive around 12 million visitors
per year [13]. Initially, tourists visited for the coastal and marine landscape, but in
recent years visitors have become more interested in the cenotes and underground
activities. All these, therefore that another human activity such as mobility, pork
farms, soil extractions and growing of the cities are the development project that in
the next years will produce environmental impacts in special to water [14]. For these
reasons, it is important to monitor the water to understand how the ecosystems work.

2. Material and methods

From 2016 to 2020, we profiled 19 cenotes in Riviera Maya and six in Cozumel
(Figure 1) using the Hydrolab Data Sonde 5 (Hydrolab DS5) to identify the differ-
ent layers and variations. We recorded dissolved oxygen (+0.01 mg/1), pH (+001
pH), salinity (+0.01%), and water temperature (+0.01°C). The Hydrolab DS5 was
programed to record every 30 seconds and the divers introduce in the cave during one
and half hours. At the same time, recording of faunal composition was conducted
to identify crustaceans such as isopods, different species of shrimp, amphipods, and
remipedes [15, 16, 17]. Divers also recorded tree roots into the aquifer using taxo-
nomic guides [18, 19] and identified the systems with clear water discharges to the
Caribbean Sea. We also examined tourism and tourist activities in the Riviera Maya
and Cozumel and corroborated this data with vegetation and soil use in the surround-
ing the cenotes as well as with data reported in the literature.

3. Results
3.1 Environmental conditions
After checking the profiles of twenty-four underground systems, it was possible to

recognize three main ecosystems. The first is a freshwater ecosystem that is not strati-
fied and that has similar conditions of oxygen, temperature, and pH in superficial
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Figure 1.
Location of the different cenotes in the Riviera Maya and Cozumel.

and bottom areas. We recorded 10 sites in freshwater ecosystems (Table 1), some of
which are shallow ponds and some of which are 15 meters deep.

In these profiles, the water column is not stratified accordingly with the salinity
content. The temperature and oxygen dissolved have a negative relationship with
the depth because both variables decrease as depth increases. However, pH values
are more independent and showed variations, possibly due to the biochemical karst
process, as has been reported for other systems [20] (Figure 2).

The second type of ecosystem is a brackish/marine water ecosystem. In these
ecosystems the marine entrance has a direct connection with the sea. As such, some
marine animals such as echinoderms and some species of fish live in caves. In these
systems the mixing zone between freshwater and marine water is all time and only in
some season is possible identify stratification in the water column. We recorded two
systems in this study (Figure 3 and Table 2).

The third type of ecosystem is an anchialine pool, which is a subterranean estuary
containing freshwater and marine water separated by a mixing zone called the halo-
cline. Anchialine pools can be found at different depths according to their distance
from the sea. In this study, we recorded thirteen of these systems in the Riviera Maya
and Cozumel. In these ecosystems, the stratified water column is due to the salinity
changes that produce similar conditions of temperature, pH, and oxygen dissolved. It
is interesting that in these environments the most rich species were found just past the
halocline in the marine layer.

In anchialine ecosystems the temperature and oxygen dissolved decrease as depth
increases, and both have a direct relationship with the halocline at different depths.

3



Systems Salinity Environmental conditions Organisms recorded
Boca del Puma Freshwater The water profile is not Typhlatya mitchelli; Creaseriella anops; Creaseria morleyi Antromysis cenotensis
Tres Bocas Freshwater stratified with similar values Typhlatya mitchelli; C. anops; Creaseria movleyi A. cenotensis
of temperature and pH;
Actun Jaleb Freshwater decreasing a little for oxygen Typhlatya mitchelli; C. anops; Creaseria morleyi A. cenotensis
Muevelo Rico Freshwater dissolved Typhlatya mitchelli; C. anops; Creaseria morleyi A. cenotensis
Aktun Muknal Freshwater Typhlatya mitchelli; C. anops; Creaseria morleyi A. cenotensis
Vacaha Freshwater Typhlatya mitchelli; C. anops; Creaseria morleyi A. cenotensis Stygomysis holthuisi
Cueva Santa Cruz Freshwater Typhlatya mitchelli; C. anops; Creaseria movleyi A. cenotensis
Dos Arboles Freshwater Typhlatya mitchelli; C. anops; Creaseria morleyi A. cenotensis
San Felipe Nohoch Freshwater Typhlatya mitchelli; C. anops; Creaseria morleyi
Yum Ha Freshwater Typhlatya mitchelli; C. anops; Creaseria morleyi A. cenotensis
Table 1.

Record of freshwater subterranean ecosystems with environmental conditions and fauna registered.
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However, in the case of Cenote Calavera, the temperature increases at same time
that the marine layer is present. In contrast, the pH values in all cenotes are higher in
comparison with the superficial layer due to the alkalinity value of the marine layer
(Figure 4).

These three main ecosystems exist in different places according with several factors
such as surrounding vegetation but mainly with the depth when the subterranean branch
cave reaches, but also is relationship with the distance from the coast that the cenote
(entrance) is located because the incorporation of the marine layer is most important in
the those systems close to the coastal area but far away to the coastal line the freshwater
lenses is more wider whilst that the marine layer is found to deeper area (Figure 5).

3.2 Surrounding vegetation to the aquifer

The semi-evergreen seasonal forest is the dominant tropical forest in the study
area, and in the state of Quintana Roo [21, 22]. In Mexico, this kind of seasonal

5



Limnology - The Importance of Monitoring and Correlations of Lentic and Lotic Waters

40 28
35 27.5
- g 27 g
5 2| 5= 265 @
> = j==s 2
Z | Z2 2% &
£ g = g
= =15 255 o
@ £ o £
@ v
- 10 25 @
5 24.5
o 24
oo oo oo o Cc oo o Qoo
FRARRRARIARRIIIIRIIRKIRKRI
R - E R PR R EE R
D - NN N MMM T T T NN
A R )
10 40
2 35
8
- .30
w 7 e d —_—
S ¢ E ;5_25 E
z s € Zz20 5
£ a2 =
2 ; © =15 1, a
w
S 10 11
!
1 5
0 o & 4
0 0 O O O O O 0O 0 O O 9O 9 QO O oo
D B I B B B B T B s B B B Bt B B B )
SIESRESIELAR
B E Diving time (m)
40 —Ssal ==-LDO
35 % 40 035 —~
_30 £ 3s 03 B
£ 3T w30 E
= ] @ 0.25
= 2 S B
Z0 2 ~=’£_— 02 2
£ B 20 o
=15 2 = 015 4
a 5 =15 L]
10 ] 310 01 g
s é s 0.05 g
0 o 0
0 O 0O 0O 0O 0 O OO0 OO0 0O O OO0 QO O
L s B s B s s B B B B s B R B
RITFTRESISAR
C F Diving time (m)
Figure 3.
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Systems Salinity Environmental conditions Organisms recorded
Casa Cenote Brackish/Marine water The water profile is not Typhlatya pearsei; Metacirolana
stratified; just the mixing mayana
. . . zone; and the temperature . .
Aerolito Brackish/Marine water . P ’ Procaris mexicana;
oxygen dissolved, and pH )
O N Metacivolana mayana;
showed values similar in the . .
N . Xibalbanus cozumelensis;
superficial and deeper layers ) |
Copidaster cavernicola;
Ophionereis conmutabilis
Table 2.

Record of brackish/marine water subterranean ecosystems with environmental conditions and fauna registered.

tropical forest is known as a tropical evergreen forest [23] or medium semi-evergreen
forest [24]. This vegetation develops in the Aw climate [25], characterized by a short
but well-marked dry season, which in the area extends from November to May, dur-
ing which short, sporadic, and infrequent rains may occur (191 mm in average), in
addition to a rainy season the rest of the year, with rainfall around 1000 mm and an
average annual temperature between 20 and 25°C. A semi-evergreen seasonal tropical
forest grows on mainly flat terrain with shallow soils (20 or 35 cm deep), generally of
the Rendzina type, and with outcrops of limestone [4].
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Figure 4.

Examples of profiles according to the depth of the water column of anchialine ecosystems. A, B, and C graphs
ave for cenote Calavera, and D, E, and F graphs are for cenote Chempita in Cozumel. Salinity is represented by
continuum lines with o, and temperature, oxygen dissolved, and pH are represented by dashed lines with e.

Although a large area of this tropical seasonal forest is currently secondary, relics
of the original forest can still be found [26]. Several tree strata define its vertical
structure with the abundant presence of climbers and epiphytes and a well-developed
shrub layer as well as an herbaceous layer composed of seedlings from the species at
the upper strata [18]. The characteristic tree species are Bursera simaruba (L.) Sarg.,
Metopium rownie (Jacq.) Urb., Vitex gaumeri Greenm., Brosimum alicastrum Sw.,
Manilkara zapota (L.) P. Royen, and Psidium sartorianum (O.Berg) Nied. Among
the most frequent shrubs are Acacia collinsi Saff., Bauhinia jenningsii P. Wilson, and
Eugenia acapulcensis Steud. To name a few. In the epiphytic stratum, there are species
such as Brassavola nodosa (L.) Lindl. And Selenicereus testudo (Karw. Ex Zucc.) Buxb.

The height of trees in the semi-evergreen seasonal tropical forest ranges from 18 to
25 m [24]. Trees of up to 35 m can also be found [4]; these are associated with better
environmental conditions [18] such as areas with greater soil depth and karst water
bodies (cenotes). The vegetation associated with these cenotes has the same floristic
composition of the semi-evergreen seasonal tropical forest, but the tree stratum
shows to be characteristically evergreen with a greater abundance of epiphytes
(Figure 6) [4, 19].
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Schematic underwater profile where it is possible to see the velationship (halocline) between freshwater (light
blue) and marine (dark blue) layers, according to depth and distance from the sea. The tree roots that reaching the
aquifer to maintained the semi-evergreen state of tropical forest and mangrove vegetation.

4. Discussion
4.1 Tourist activity in the cenotes and its impacts

The great diversity and scenic beauty of the Riviera Maya, both on the surface
and underwater, is related to the different types of ecosystems and large amounts of
natural resources. This has facilitated the diversification of tourist activity, which now
also includes exploring underground rivers, cenotes, and caves [27].

Visits to cenotes have increased significantly. The arrival of sargassum on the coast
of Quintana Roo has motivated visitors to move to these spaces [28], since tourism
service providers have recognized them as a substitute for beaches.

The cenotes have great landscape and cultural importance. Their underwater
landscapes are geologically sculptural, which, together with their link to the general
Mayan culture, creates a synergy in the visit. The cultural importance of cenotes dates
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to pre-Hispanic times, and rituals and offerings learned from their Mayan ancestors
are still performed these days to request rain, care for crops, and to ask for permission
to enter the cenote [29]. Cenotes contain unique fauna and flora, formations such as
stalagmites and stalactites, and ritual elements of the Mayan civilization. In addition,
the areas around the cenotes are usually surrounded by jungle, mangrove, or palm
and with different species of fauna that give each site an evocative power. This is why
it is in these areas that observation and interpretation walks of the Mayan culture are
offered.

The cenotes not only have unique esthetic natural characteristics that entice people
to visit them, but they are also repositories of unique species of flora and fauna, which
is where the biological and ecological importance of these systems lies [30]. Although
cenotes are highly fragile ecosystems, there are currently no regulations for their use
and management. In addition, since they are not isolated systems but rather they con-
nect with groundwater that sometimes connects with the sea [31], their inappropriate
use can cause unquantifiable impacts on the rest of the ecosystems with which they
interact [28].

The excess of tourists in the cenotes is putting the aquifer and its aquatic biota
at risk. Visitors introduce physical, chemical, and biological agents into the ceno-
tes, such as garbage, sunscreens, repellents, creams, and fecal matter. These con-
taminants can alter the system, causing changes in temperature, erosion, increase
in fecal coliforms, and excess nutrients that can generate irreversible impacts
[27, 28]. Several of the cenotes studied experience high tourist activity (Table 1)
because they are being offered as recreational spaces for swimming, snorkeling,
diving, and hiking.
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Systems Salinity Environmental Organisms recorded
conditions

Cocodrilo Anchialine; Halocline at 8 m The water Tulumella sp.

Chankanaab Anchialine; Halocline at 7 m Etrr(;ftlili::i with Xibalbanus cozumelensis; Barbouria cubensis Macrobrachium carcinus; Macrobrachium faustinum;

Tres Potrillos Anchilaline; Halocline at 12 m lower values Agostocaris zabaletai, Procaris mexicana, Typhlatya sp., Barbouria cubensis; Calliasmata nohochi;
in deeper Metacirolana mayana

Taj Maha Anchialine; Halocline at 14 m T:;:rgn;:rrme Typhlatya pearsei; Xibalbanus tulumensis; Antromysis cenotensis

27 Steps Anchialine; Halocline at 15 m temperature; Xibalbanus tulumensis; Bavbouria cubensis; Typhlatya pearsei; Typhlatya mitchelli; A. cenotensis
oxygen

Crustacea Anchialine; Halocline at 15 m disZilve dand Typhlatya pearsei; Xibabalbanus tulumensis; Xibalbanus fuchscockburni; Metacivolana mayana; A. cenotensis

Odyssey Anchialine; Halocline at 18 m pH increase to Typhlatya pearsei; Typhlatya mitchelli; A. cenotensis

B Anchialine; Halocline at 16 alkaline values -y, ; Typhlatya mitchelli; A :

ang nchialine; Halocline at 16 m according with yphlatya pearsei; Typhlatya mitchelli; A. cenotensis

Calavera Anchialine; Halocline at 18 m the deeper area Typhlatya pearsei; Xibalbanus tulumensis; Typhlatya mitchelli; Mayaweckelia sp.

Eden Anchialine; Halocline at 18 m Typhlatya pearsei; Typhlatya mitchelli

Regina Anchialine; Halocline at 20 m Xibalbanus tulumensis; Typhlatya mitchelli; Typhlatya pearsei

Chempita Anchialine: Halocline at 24 m Anchialocaris paulini, Agostocaris zabaletai, Xibalbanus sp; Metacirolana mayana; Mayaweckelia sp.

Tulumella sp.
Xcan Ha Anchialine; Halocline at 24 m Agostocaris bozanici;
Table 3.

Record of brackish/mavine water subterranean ecosystems with environmental conditions and fauna vegistered.
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The three ecosystem types discussed have a strong relationship with the dynam-
ics of tropical dry forest function, especially in those that are far away from the
coast. However, these relationships also exist in coastal areas where the vegetation
type is characterized by mangrove and dune. How as been reported to terrestrial
cave environments they are not isolated and in these cases the cave systems fully of
water have interesting relationship with the out ecosystems surrounding [32]. The
freshwater from the aquifer in Quintana Roo is one of the best-conserved reser-
voirs in the country, but at same time it faces several threats. Exponential popula-
tion growth has occurred in Playa del Carmen, Tulum, Puerto Morelos, Akumal,
Cozumel, and Puerto Aventuras, thus increasing demand for water. Tourism
activity is changing from sun and beach activities to activities in the cenotes and
adjacent ecosystems, especially the dry tropical forest [14]. This transition in
tourism increases the threat to all underground systems because these new activi-
ties cause pollution by dissolved agents and solid wastes, as has been reported by
several local organizations [33].

System Use
Crustacea Little tourist activity
27 Steps Little tourist activity
Taj Maha Frequent tourist activity
Casa Cenote Frequent tourist activity
Vacaha Frequent tourist activity
Calavera Frequent tourist activity
Santa Cruz Frequent tourist activity
Yum Ha Little tourist activity
Rancho Regina No tourist activity
Rancho San Felipe Nohoch Frequent tourist activity
Aerolito Little tourist activity
Xcan Ha Frequent tourist activity
Tres Potrillos No tourist activity
Cocodrilo No tourist activity
Chankanaab Tourist use only for observation
Chempita (Jade Caver) Frequent tourist activity
Boca del Puma Frequent tourist activity
Tres Bocas Frequent tourist activity
Actun Jaleb No tourist activity
Eden (jardin del EDEN) Frequent tourist activity
Muevelo Rico No tourist activity
Aktun Muknal No tourist activity
Dos Arboles No tourist activity
Odyssey No tourist activity
Bang No tourist activity
Table 4.

Tourist activity in cenotes.
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This region is experiencing a continual increase in tourism and mobility
infrastructure [10] that together with the water demands evidently change the
underground water conditions because exist the risk that if the pumping water
increase the marine layer occupied these subterranean spaces and this work show
the first photograph of these ecosystems under study which, possibly in one or two
decades will be change. All these threats are present due to the economic benefits
of tourist activity in the area. The different options to diminish the damage include
environmental instruments and laws established by institutions such as the Federal
Attorney for Environmental Protection (PROFEPA), Secretariat of Environment and
Natural Resources (SEMARNAT), and National Commission of Natural Protected
Areas Mexico (CONANP). Some proposed actions to reduce the harmful impacts
of increased tourism include wastewater treatments, avoiding developing artificial
greens like golf courses, stadiums, and parks, forbidding the injection of wastewater
to deeper aquifers, and environmental education.

The discussed ecosystems are facing natural and anthropogenic impacts, high-
lighting their vulnerability. As such, monitoring their water conditions is highly
important (Tables 3 and 4).

5. Conclusions

This chapter presented results of our study of groundwater conditions (temp, pH,
oxygen dissolved, and salinity) in nineteen cenotes and underground rivers of the
Mexican Caribbean corridor from Tulum to Puerto Morelos (Riviera Maya, Yucatan
Peninsula) and six cenotes of Cozumel. We also profiled the predominant vegetation
on the surface of this region, which is a seasonally dry tropical forest, to understand
the components and functioning of these subterranean ecosystems to assess their vul-
nerability and identify their threats from human development (population growth,
tourism development, mobility capacity). We identified three types of underground
aquatic ecosystems: freshwater, brackish/marine water, and anchialine.

Rapid growth in tourism in the Riveria Maya and Cozumel, among other loca-
tions, is polluting and contaminating these regions’ ecosystems and thus it is of great
importance to monitor these ecosystems and the fauna that inhabit them to identify
their capacity for resilience.
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